(小非整理)
一.维吉尼亚密码
维吉尼亚密码引入了“密钥”的概念,即根据密钥来决定用哪一行的密表来进行替换,以此来对抗字频统计。假如以上面第一行代表明文字母,左面第一列代表密钥字母,对如下明文加密:
TO BE OR NOT TO BE THAT IS THE QUESTION
当选定RELATIONS作为密钥时,加密过程是:明文一个字母为T,第一个密钥字母为R,因此可以找到在R行中代替T的为K,依此类推,得出对应关系如下:
密钥:RELAT IONSR ELATI ONSRE LATIO NSREL
明文:TOBEO RNOTT OBETH ATIST HEQUE STION
密文:KSMEH ZBBLK SMEMP OGAJX SEJCS FLZSY
历史上以维吉尼亚密表为基础又演变出很多种加密方法,其基本元素无非是密表与密钥,并一直沿用到二战以后的初级电子密码机上。
三.栅栏加密法
栅栏加密法是一种比较简单快捷的加密方法。栅栏加密法就是把要被加密的文件按照一上一下的写法写出来,再把第二行的文字排列到第一行的后面。相应的,破译方法就是把文字从中间分开,分成2行,然后插入。栅栏加密法一般配合其他方法进行加密。例:加密information 分行 i f r a i n n o m t o 合并 ifrainnomto 完成~
五.RSA算法
RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA算法是一种非对称密码算法,所谓非对称,就是指该算法需要一对密钥,使用其中一个加密,则需要用另一个才能解密。 RSA的算法涉及三个参数,n、e1.e2。 其中,n是两个大质数p、q的积,n的二进制表示时所占用的位数,就是所谓的密钥长度。 e1和e2是一对相关的值,e1可以任意取,但要求e1与(p-1)*(q-1)互质(互质:两个正整数只有公约数1时,他们的关系叫互质);再选择e2,要求(e2*e1)mod((p-1)*(q-1))=1。 (n及e1),(n及e2)就是密钥对。 RSA加解密的算法完全相同,设A为明文,B为密文,则:A=B^e1 mod n;B=A^e2 mod n; e1和e2可以互换使用,即: A=B^e2 mod n;B=A^e1 mod n
七.四方密码
四方密码用4个5×5的矩阵来加密。每个矩阵都有25个字母(通常会取消Q或将I,J视作同一样,或改进为6×6的矩阵,加入10个数字)。 首先选择两个英文字作密匙,例如example和keyword。对于每一个密匙,将重复出现的字母去除,即example要转成exampl,然后将每个字母顺序放入矩阵,再将余下的字母顺序放入矩阵,便得出加密矩阵。 将这两个加密矩阵放在右上角和左下角,余下的两个角放a到z顺序的矩阵: a b c d e E X A M P f g h i j L B C D F k l m n o G H I J K p r s t u N O R S T v w x y z U V W Y Z K E Y WO a b c d e R D A BC f g h i j F G H I J k l m n o L M N P S p r s t u T U V X Z v w x y z 加密的步骤: 两个字母一组地分开讯息:(例如hello world变成he ll ow or ld) 找出第一个字母在左上角矩阵的位置 a b c d e E X A M P f g h i j L B C D F k l m n o G H I J K p r s t u N O R S T v w x y z U V W Y Z K E Y W O a b c d e R D A B C f g h i j F G H I J k l m n o L M N P S p r s t u T U V X Z v w x y z 同样道理,找第二个字母在右下角矩阵的位置: a b c d e E X A M P f g h i j L B C D F k l m n o G H I J K p r s t u N O R S T v w x y z U V W Y Z K E Y W O a b c d e R D A B C f g h i j F G H I J k l m n o L M N P S p r s t u T U V X Z v w x y z 找右上角矩阵中,和第一个字母同行,第二个字母同列的字母: a b c d e E X A M P f g h i j L B C D F k l m n o G H I J K p r s t u NO R S T v w x y z U V W Y Z K E Y W O a b c d e R D A B C f g h i j F G H I J k l m n o L M N P S p r s t u T U V X Z v w x y z 找左下角矩阵中,和第一个字母同列,第二个字母同行的字母: a b c d e E X A M P f g h i j L B C D F k l m n o G H I J K p r s t u N O R S T v w x y z U V W Y Z K E Y W O a b c d e R D A B C f g h i j F G H I J k l m n o L M N P S p r s t u T U V X Z v w x y z 这两个字母就是加密过的讯息。 he lp me ob iw an ke no bi的加密结果: FY GM KY HO BX MF KK KI MD 二方密码 二方密码(en:Two-square_cipher)比四方密码用更少的矩阵。 得出加密矩阵的方法和四方密码一样。 例如用「example」和「keyword」作密匙,加密lp。首先找出第一个字母(L)在上方矩阵的位置,再找出第二个字母(D)在下方矩阵的位置: E X A M P L B C D F G H I J K N O R S T U V W Y Z K E Y W O R D A B C F G H I J L M N P S T U V X Z 在上方矩阵找第一个字母同行,第二个字母同列的字母;在下方矩阵找第一个字母同列,第二个字母同行的字母,那两个字母就是加密的结果: E X A M P L B C D F G H I J K N O R S T U V W Y Z K E Y W O R D A B C F G H I J L M N P S T U V X Z help me的加密结果: he lp me HE DL XW 这种加密法的弱点是若两个字同列,便采用原来的字母,例如he便加密作HE。约有二成的内容都因此而暴露。
十一.ADFGVX密码
假设我们需要发送明文讯息 "Attack at once", 用一套秘密混杂的字母表填满 Polybius 方格,像是这样: A D F G X A b t a l p D d h o z k F q f v s n G g j c u x X m r e w y i 和 j 视为同个字,使字母数量符合 5 × 5 格。之所以选择这五个字母,是因为它们译成摩斯密码时不容易混淆,可以降低传输错误的机率。使用这个方格,找出明文字母在这个方格的位置,再以那个字母所在的栏名称和列名称代替这个字母。可将该讯息可以转换成处理过的分解形式。 A T T A C K A T O N C E AF AD AD AF GF DX AF AD DF FX GF XF 下一步,利用一个移位钥匙加密。假设钥匙字是「CARGO」,将之写在新格子的第一列。再将上一阶段的密码文一列一列写进新方格里。 C A R G O _________ A F A D A D A F G F D X A F A D D F F X G F X F X 最后,按照钥匙字字母顺序「ACGOR」依次抄下该字下整行讯息,形成新密文。如下: FAXDF ADDDG DGFFF AFAXX AFAFX 在实际应用中,移位钥匙字通常有两打字符那么长,且分解钥匙和移位钥匙都是每天更换的。 ADFGVX 在 1918年 6月,再加入一个字 V 扩充。变成以 6 × 6 格共 36 个字符加密。这使得所有英文字母(不再将 I 和 J 视为同一个字)以及数字 0 到 9 都可混合使用。这次增改是因为以原来的加密法发送含有大量数字的简短信息有问题。
十三.维热纳尔方阵
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z B C D E F G H I J K L M N O P Q R S T U V W X Y Z A C D E F G H I J K L M N O P Q R S T U V W X Y Z A B D E F G H I J K L M N O P Q R S T U V W X Y Z A B C E F G H I J K L M N O P Q R S T U V W X Y Z A B C D F G H I J K L M N O P Q R S T U V W X Y Z A B C D E G H I J K L M N O P Q R S T U V W X Y Z A B C D E F H I J K L M N O P Q R S T U V W X Y Z A B C D E F G I J K L M N O P Q R S T U V W X Y Z A B C D E F G H J K L M N O P Q R S T U V W X Y Z A B C D E F G H I K L M N O P Q R S T U V W X Y Z A B C D E F G H I J L M N O P Q R S T U V W X Y Z A B C D E F G H I J K M N O P Q R S T U V W X Y Z A B C D E F G H I J K L N O P Q R S T U V W X Y Z A B C D E F G H I J K L M O P Q R S T U V W X Y Z A B C D E F G H I J K L M N P Q R S T U V W X Y Z A B C D E F G H I J K L M N O Q R S T U V W X Y Z A B C D E F G H I J K L M N O P R S T U V W X Y Z A B C D E F G H I J K L M N O P Q S T U V W X Y Z A B C D E F G H I J K L M N O P Q R T U V W X Y Z A B C D E F G H I J K L M N O P Q R S U V W X Y Z A B C D E F G H I J K L M N O P Q R S T V W X Y Z A B C D E F G H I J K L M N O P Q R S T U W X Y Z A B C D E F G H I J K L M N O P Q R S T U V X Y Z A B C D E F G H I J K L M N O P Q R S T U V W Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Z A B C D E F G H I J K L M N O P Q R S T U V W X Y 著名的维热纳尔方阵由密码学家维热纳尔编制,大体与凯撒加密法类似。即二人相约好一个密钥(单词),然后把加密后内容给对方,之后对方即可按密码表译出明文。密钥一般为一个单词,加密时依次按照密钥的每个字母对照明码行加密。例如:我的密钥是who,要加密的内容是I love you,则加密后就是E SCRL MKB.即加密I,就从密钥第一个字母打头的w那行找明码行的I对应的字母,即E。加密l,就从密钥第2个字母打头的h那行找明码l对应的字母,S。加密o,从密钥第三个字母O打头的那行找到明码行中o对应的字母,C。加密v,就又从密钥第一个字母w打头的那行找到明码行中v对应的字母,R。 依此类推。所以由维热纳尔方阵加密的密码,在没有密钥的情况下给破译带来了不小的困难。维热纳尔方阵很完美的避开了概率算法(按每个语种中每个字母出现的概率推算。例如英语中最多的是e),使当时的密码破译师必须重新找到新方法破译。
十四.埃特巴什码 埃特巴什码是一个系统:最后一个字母代表第一个字母,倒数第二个字母代表第二个字母。 在罗马字母表中,它是这样出现的: 常文:a b c d e f g h i j k l m n o p q r s t u v w x y z 密文:Z Y X W V U T S R Q P O N M L K J I H G F E D C B A 这种密码是由熊斐特博士发现的。熊斐特博士为库姆兰《死海古卷》的最初研究者之一,他在《圣经》历史研究方面最有名气的著作是《逾越节的阴谋》。他运用这种密码来研究别人利用其他方法不能破解的那些经文。这种密码被运用在公元1世纪的艾赛尼/萨多吉/拿撒勒教派的经文中,用以隐藏姓名。其实早在公元前500年,它就被抄经人用来写作《耶利米书》〔1〕耶利米是活动在公元前627-前586年间的犹太先知,圣经旧约书中有许多关于他的记载。在他离世前,犹太领土已被巴比伦人占领。〔1〕。它也是希伯来文所用的数种密码系统之一。 白金特、雷伊和林肯在《弥赛亚的遗产》中写道,熊斐特博士于《艾赛尼派的奥德赛》一书中描述他如何对圣殿骑士们崇拜的鲍芙默神痴迷,又如何用埃特巴什码分析这个词。令他惊奇的是,破译出的词“Sophia”为希腊语中的“智慧”。 在希伯来语中,“Baphomet”一词拼写如下——要记住,希伯来语句必须从右向左读: 〔 taf 〕 〔 mem 〕 〔 vav 〕 〔 pe 〕 〔 bet 〕 将埃特巴什码用于上述字母,熊斐特博士得到如下结果: 〔 alef 〕 〔 yud 〕 〔 pe 〕 〔 vav 〕 〔 shin 〕 即为用希伯来语从右向左书写的希腊词“Sophia”。 Sophia的词义不仅限于“智慧”。它还是一位女神的名字——这位女神照说应该是上帝的新娘。许多人相信,圣殿骑士们崇拜这位女神。〔1〕作者引用的是诺斯替学派的神话:“不可知解”的至尊上帝,“源化”出最早的几位亚神,最后一位就是索菲亚——“智慧”。她极求得到对上帝“神质”的“真知”——她名字第二意义的来源,而这种不合神性的欲望“孕生”了邪神,即创造宇宙的另一位“上帝”。诺斯替派将他等同于旧约中的上帝,来解释亚当夏娃堕降尘间和大洪水的事件。〔1〕 圣殿骑士们通晓埃特巴什码的事实,强烈表明有些来自一个拿撒勒教派的人置身于圣殿骑士中间。 丹·布朗关于英语是“最纯洁的”语言的观念可能是空想的,但并不是什么新理论。莱纳堡附近有个叫做莱纳浴泉的村庄,那里的神父亨利·布德写过一本名为《真实的凯尔特语》的书,也声称英语是一种神圣的语言,或许在“巴比伦塔”〔2〕用方舟拯救人类的诺亚,有一支后代在巴比鲁尼亚定居。他们在史纳尔平原建造高塔,试图攀登天界。恼怒的上帝分化了在此之前统一使用的语言,*而交流不通引发的混乱和争执使人前功尽弃。〔2〕堕毁前就已得到使用。据说,这本书从字面上是不能理解的,它是用密码写成的,传达一个不同的信息。我们还应该记住,与其他的一些欧洲语言一样,英语的许多词汇源于拉丁。正如翠茜·特威曼在《达戈贝特复仇记》杂志中指出的那样,英语因为有26个字母,可以完美地用于埃特巴什码。其他欧洲语言所用的字母则不成偶数。此外,她始终认为郇山隐修会偏爱英语