查看: 1024|回复: 15

[扔一点节操] 个人翻译的betterexplained上的部分文章

简洁模式
发表于 2023-6-2 20:59:08 四川| 来自小霸王手机 | 显示全部楼层
如题网站是 https://betterexplained.com/
楼主是闲得没事干的高三学生,在不久以前发现了这个奇妙的数学网站,感觉这个网站上的核心思想非常妙,所以想翻译一下上面的部分文章。不过我个人英语和数学水平都非常有限,所以译文连同原文一起放出来,要是有哪里翻译得不对请务必指正!
登录帐号可查看完整回帖内容
| 楼主| 发表于 2023-6-2 20:59:21 四川| 来自小霸王手机 | 显示全部楼层
1l备用,
| 楼主| 发表于 2023-6-2 21:04:36 四川| 显示全部楼层
首先是这篇,我非常喜欢里面的比喻:
Developing Your Intuition For Math
建立数学直观


Our initial exposure to an idea shapes our intuition. And our intuition impacts how much we enjoy a subject. What do I mean?
我们对一个想法最初的接触塑造了我们的直觉。我们的直觉影响了我们对一个事物的喜爱程度。这是在指什么呢?

Suppose we want to define a “cat”:
假设我们想给"猫"下个定义:

Caveman definition: A furry animal with claws, teeth, a tail, 4 legs, that purrs when happy and hisses when angry…
原始人定义:有爪子,牙齿,一根尾巴和四条腿,高兴时咕噜咕噜,生气时滋滋滋的毛茸茸动物。
Evolutionary definition: Mammalian descendants of a certain species (F. catus), sharing certain characteristics…
进步的定义:某种特定哺乳动物的后代(学名:家猫),有着共通的特征……
Modern definition: You call those definitions? Cats are animals sharing the following DNA: ACATACATACATACAT…
现代定义:你管这些叫定义?猫是着以下DNA序列的动物:ACATACATACATACAT……



The modern definition is precise, sure. But is it the best? Is it what you’d teach a child learning the word? Does it give better insight into the “catness” of the animal? Not really. The modern definition is useful, but after getting an understanding of what a cat is. It shouldn’t be our starting point.
现代的定义当然很精确。但它是最好的吗?你是这样教小孩理解这个单词的吗?它真的让我们理解了这种动物的本质吗?现代定义很有用,但前提是理解了猫究竟是什么。所以我们不应该从这里开始。
Unfortunately, math understanding seems to follow the DNA pattern. We’re taught the modern, rigorous definition and not the insights that led up to it. We’re left with arcane formulas (DNA) but little understanding of what the idea is.
很不幸地,数学的思维模式像DNA序列一样。我们学的是现代的,严格精准的定义,而不是逐渐深入的理解。我们只剩下了神秘的公式(像DNA一样)却没有对它的理解。

Let’s approach ideas from a different angle. I imagine a circle: the center is the idea you’re studying, and along the outside are the facts describing it. We start in one corner, with one fact or insight, and work our way around to develop our understanding. Cats have common physical traits leads to Cats have a common ancestor leads to A species can be identified by certain portions of DNA. Aha! I can see how the modern definition evolved from the caveman one.
让我们从另一个角度看问题吧。想象一个圆:正中间是你正在学习的东西,周围环绕着对它的描述。我们从某处事实或理解开始,找到方向来更新我们的认知。猫有相同的特征→猫有共同的祖先→特定的DNA片段可以用来识别一个物种。好!我已经看到了定义的演化——从原始人的到现代的。

But not all starting points are equal. The right perspective makes math click — and the mathematical “cavemen” who first found an idea often had an enlightening viewpoint. Let’s learn how to build our intuition.
但并非所有开始的地方都是平等的。好的角度可以使数学豁然开朗——而且数学式的原始人观点通常都非常有启发作用。让我们开始吧。
本帖子中包含更多图片或附件资源

您需要 登录 才可以下载或查看,没有帐号?加入学院

| 楼主| 发表于 2023-6-2 21:07:05 四川| 来自小霸王手机 | 显示全部楼层
What is a Circle?
什么是圆?
Time for a math example: How do you define a circle?
数学例子来咯:你是怎么定义圆的?
Definitions of a circle

There are seemingly countless definitions. Here’s a few:
似乎有无穷多的定义。以下列出一些:

The most symmetric 2-d shape possible
高度对称的平面图形
The shape that gets the most area for the least perimeter (see the isoperimeter property)
最小周长能围出最大面积的图形(等周长图形中)
All points in a plane the same distance from a given point (drawn with a compass, or a pencil on a string)
对给定的某点,所有到该点距离相等的点的集合(可以用圆规或者套着绳结的笔画)
The points (x,y) in the equation x2 + y2 = r2 (analytic version of the geometric definition above)
满足方程的点的集合(上面定义的解析几何版)
The points in the equation r * cos(t), r * sin(t), for all t (really analytic version)
(参数方程)
The shape whose tangent line is always perpendicular to the position vector (physical interpretation)
切线总是垂直于矢径的图形(物理定义)
The list goes on, but here’s the key: the facts all describe the same idea! It’s like saying 1, one, uno, eins, “the solution to 2x + 3 = 5″ or “the number of noses on your face” — just different names for the idea of “unity”.
还有很多,但关键在此:所有的事都有一个共通的本质!和1,uno(意大利语),eins(德语)
,方程2x+3=5的解,你脸上鼻子的数量,都是一样的——皆为同一事物的不同名称。
But these initial descriptions are important — they shape our intuition. Because we see circles in the real world before the classroom, we understand their “roundness”. No matter what fancy equation we see (x2 + y2 = r2), we know deep inside that a circle is “round”. If we graphed that equation and it appeared square, or lopsided, we’d know there was a mistake.
但这些最初的描述很重要——它们塑造了我们的直觉。因为我们在上学前就见过真实的圆,我们就能理解"圆"。我们无论看见多奇特的方程,都能理解它的本质:圆是"○"。如果我们画出这个方程的图形,却发现它是方的或者不对称的,我们就知道它不是圆。

As children, we learn the “caveman” definition of a circle (a really round thing), which gives us a comfortable intuition. We can see that every point on our “round thing” is the same distance from the center. x2 + y2 = r2 is the analytic way of expressing that fact, using the Pythagorean theorem for distance. We started in one corner, with our intuition, and worked our way around to the formal definition.
从小以来,我们就学到了原始人定义的圆(非常圆的东西),这给了我们非常美妙的直观。我们能看到,我们"非常圆的东西"上的所有点到圆心的距离都相等。则是个用了勾股定理来转述事实的解析几何定义。我们从我们的直观开始,走向了严格的定义。

Other ideas aren’t so lucky. Do we instinctively see the growth of e, or is it an abstract definition? Do we realize the rotation of i, or is it an artificial, useless idea?
但是其他的概念就没有这么好了。我们能直接看到e是"增长",又或者它只是个抽象的概念?我们理解了i是"旋转",又或者它只是个假的,没用的概念?
本帖子中包含更多图片或附件资源

您需要 登录 才可以下载或查看,没有帐号?加入学院

| 楼主| 发表于 2023-6-2 22:17:08 四川| 来自小霸王手机 | 显示全部楼层
A Strategy For Developing Insight
建立理解的方法

I still have to remind myself about the deeper meaning of e and i — which seems as absurd as “remembering” that a circle is round or what a cat looks like! It should be the natural insight we start with.
我仍然会提醒我自己e和i的深层含义——但这有点像提醒自己圆是圆的或猫长什么样一样荒唐。这本该是我们开始的地方。

Missing the big picture drives me crazy: math is about ideas — formulas are just a way to express them. Once the central concept is clear, the equations snap into place. Here’s a strategy that has helped me:
我看不清整体就会疯(这句不会,丢人.jpg)。数学理应是关于想法的——公式只是表现它们的一种途径。只要核心概念清楚了,方程就成型了。以下是一种曾帮助过我的方法:

Step 1: Find the central theme of a math concept. This can be difficult, but try starting with its history. Where was the idea first used? What was the discoverer doing? This use may be different from our modern interpretation and application.
1.找到数学概念的本质。可能有点难,但也可以试试从历史上的发展开始。该概念最初被用来做什么?提出者做了什么?注意,这用途可能跟我们现在的定义和应用不同。
Step 2: Explain a property/fact using the theme. Use the theme to make an analogy to the formal definition. If you’re lucky, you can translate the math equation (x2 + y2 = r2) into a plain-english statement (“All points the same distance from the center”).
2.试着以各种形式解释本质。可以用类比。
Step 3: Explore related properties using the same theme. Once you have an analogy or interpretation that works, see if it applies to other properties. Sometimes it will, sometimes it won’t (and you’ll need a new insight), but you’d be surprised what you can discover.
3.用你发现的本质来探索相关性质。一旦你有一个有效的类比或解释,看看它是否适用于其他性质。有时它会奏效,有时不会(你需要新的见解),但你会对你发现的东西惊讶。
Let’s try it out.
来试试。
| 楼主| 发表于 2023-6-2 22:20:40 四川| 来自小霸王手机 | 显示全部楼层
A Real Example: Understanding e
实例:理解e
Understanding the number e has been a major battle. e appears all of science, and has numerous definitions, yet rarely clicks in a natural way. Let’s build some insight around this idea. The following section will have several equations, which are simply ways to describe ideas. Even if the equation is gibberish, there’s a plain-english idea behind it.
理解数字e一直以来都是困难的。e出现在科学的各个分支中,有无数个定义,但却很少以一种自然的方式出现。让我们来建立对它的直观。下面的部分有几个等式,可以用来简单描述一些概念。哪怕等式看上去像胡扯,我们仍然能发现它背后的简明理解。

Here’s a few popular definitions of e:
一些e的定义(图在后面):
The first step is to find a theme. Looking at e’s history, it seems it has something to do with growth or interest rates. e was discovered when performing business calculations (not abstract mathematical conjectures) so “interest” (growth) is a possible theme.
首先是找到实质。看看e的历史,它总是和增长与利率有关。e是在做商业计算时被发现的,而不是抽象的数学概念所以利率,或称增长,也许是它的核心。

Let’s look at the first definition, in the upper left. The key jump, for me, was to realize how much this looked like the formula for compound interest. In fact, it is the interest formula when you compound 100% interest for 1 unit of time, compounding as fast as possible.
首先看看它最初的定义。在这个图的左上角。对我而言,关键是看出这个东西与复利计算公式有几分相似。实际上,这就是你以100%的利率在单位时间内获得的利息公式。

Definition 1: Define e as 100% compound growth at the smallest increment possible.
定义1:(我没法描述这句,丢人.jpg→是山寨gpt给的翻译)将e定义为在最小增量上以100%的复利增长。

Let’s look at the second definition: an infinite series of terms, getting smaller and smaller. What could this be?
看看第二个定义:无穷的多项式,而且越来越小。这又是个什么?

\displaystyle{e = {1 \over 0!} + {1 \over 1!} + {1 \over 2!} + {1 \over 3!} + \cdots}

After noodling this over using the theme of “interest” we see this definitions shows the components of compound interest. Now, insights don’t come instantly — this insight might strike after brainstorming “What could 1 + 1 + 1/2 + 1/6 + …” represent when talking about growth?”
用之前我们找到的"利率"的概念来艰难地理解这个,它显示了这概念的组成。但是灵感还没有来。也许在头脑风暴后就会来了:"谈论增长时,1 + 1 + 1/2 + 1/6 + …代表什么?"

Well, the first term (1 = 1/0!, remembering that 0! is 1) is your principal, the original amount. The next term (1 = 1/1!) is the “direct” interest you earned — 100% of 1. The next term (0.5 = 1/2!) is the amount of money your interest made (“2nd level interest”). The following term (.1666 = 1/3!) is your “3rd-level interest” — how much money your interest’s interest earned!
好吧,首项(0!=1)是你的本金。第二项是你"直接"的利息。100%的1。第三项是你的利息的利息。第四项是你利息的利息!

Money earns money, which earns money, which earns money, and so on — the sequence separates out these contributions.There’s much more to say, but that’s the “growth-focused” understanding of that idea.
钱生钱,钱生钱生钱——这个多项式展现了它们各自的贡献。这里还能作文章,但是这个概念的核心理解就是"增长"。

Definition 2: Define e by the contributions each piece of interest makes
定义2:e是每一份利息做出的贡献。
Neato.
好。

Now to the 3rd, and shortest definition. What does it mean? Instead of thinking “derivative” (which turns your brain into equation-crunching mode), think about what it means. The feeling of the equation. Make it your friend.
现在是第三个,最短的定义。它是什么?别再想导数了,你的大脑会进入方程计算模式。想想它的意义。方程的感觉。让它成为你的朋友。

\displaystyle{\frac{d}{dx}Blah = Blah}

It’s the calculus way of saying “Your rate of growth is equal to your current amount”. Well, growing at your current amount would be a 100% interest rate, right? And by always growing it means you are always calculating interest — it’s another way of describing continuously compound interest!
它以微积分的形式讲述了"你的增长速率等于你现在的量"。以你现在的量增长,当然就是100%的利率吧?而且它永远在增长,你就得永远计算利息——另一种描述复利的方式!

Definition 3: Define e as a function that always grows at 100% of your current value
定义3:定义e为一个永远以你当前的量翻倍的方式增长的函数
Nice — e is the number where you’re always growing by exactly your current amount (100%), not 1% or 200%.
好——e是精确描述你以当前的量的100%增长的数字,不是1%也不是200%。

Time for the last definition — it’s a tricky one. Here’s my interpretation: Instead of describing how much you grew, why not say how long it took?
来到最后一个定义——这个很麻烦。这是我的理解:为什么不用增长的时间(次数)来替代增长量?

If you’re at 1 and growing at 100%, it takes 1 unit of time to get from 1 to 2. But once you’re at 2, and growing 100%, it means you’re growing at 2 units per unit time! So it only takes 1/2 unit of time to go from 2 to 3. Going from 3 to 4 only takes 1/3 unit of time, and so on.
你从1开始,增长率100%,需要一次增长才能到2。但一旦你增长到2,你就能每次增长2!所以只需要二分之一的次数增长到3。从3到4只需要三分之一的次数,以此类推。

The time needed to grow from 1 to A is the time from 1 to 2, 2 to 3, 3 to 4… and so on, until you get to A. The first definition defines the natural log (ln) as shorthand for this “time to grow” computation.
从1到A的次数是从1到2,2到3,3到4…直到增长到A。第一个定义就将自然对数㏑以缩写的方式表示了增长次数。

ln(a) is simply the time to grow from 1 to a. We then say that “e” is the number that takes exactly 1 unit of time to grow to. Said another way, e is is the amount of growth after waiting exactly 1 unit of time!
lnA正是从1增长到A所需的次数。我们就可以说,e是一次增长会增长出的量。换句话说,e就是一次增长的数量的极限!

Definition 4: Define the time needed to grow continuously from 1 to a as ln(a). e is the amount of growth you have after 1 unit of time.
定义4:(和上面的表述一样,偷个懒)
Whablamo! These are four different ways to describe the mysterious e. Once we have the core idea (“e is about 100% continuous growth”), the crazy equations snap into place — it’s possible to translate calculus into English. Math is about ideas!
哇,四种方法描述神秘的e!只要我们掌握了核心观点,疯狂的方程式就原型毕露了——可以将微积分翻译成人话。数学是有关思想的!
本帖子中包含更多图片或附件资源

您需要 登录 才可以下载或查看,没有帐号?加入学院

登录帐号可查看完整回帖内容
| 楼主| 发表于 2023-6-2 22:21:05 四川| 2023-6-3 18:23编辑 | 来自小霸王手机 | 显示全部楼层
What’s the Moral?
意义何在?

In math class, we often start with the last, most complex idea. It’s no wonder we’re confused — we’re showing DNA and expecting students to see the cat.
数学课上,我们通常从最新的,最复杂的定义出发。我们不懂也就正常了——我们展示DNA,却想让学生们看见猫。

I’ve learned a few lessons from this approach, and it underlies how I understand and explain math:
我以这种方法学了一些,它构成了我对数学的理解和解释:

Search for insights and apply them. That first intuitive insight can help everything else snap into place. Start with a definition that makes sense and “walk around the circle” to find others.
找到理解,应用它们。最初的理解可以使一切东西原型毕露。从能理解的定义开始,绕个圈子来找到其它定义。
Develop mental toughness. Banging your head against an idea is no fun. If it doesn’t click, come at it from different angles. There’s another book, another article, another person who explains it in a way that makes sense to you.
精神要坚强。嗯瞪着一个概念没有意思。如果没有灵感,换个角度就是了。总有人能把你教懂的。
It’s ok to be visual. We think of math as rigid and analytic — but visual interpretations are ok! Do what develops your understanding.
可视化很好。我们把数学视作固定的,严格的——但直观图形也可以!不择手段地更新你的理解。
Imaginary numbers were puzzling until their geometric interpretation came to light, decades after their initial discovery. Looking at equations all day didn’t help mathematicians “get” what they were about.
虚数很怪,直到它的几何意义被发现,而且是在它被发明的几十年后。永远瞪着方程式对数学家们领会它们的意义无益。
Math becomes difficult when we emphasize definitions over understanding. Remember that the modern definition is the most advanced step of thought, not necessarily the starting point. Don’t be afraid to approach a concept from a funny angle — figure out the plain-English sentence behind the equation. Happy math.
我们强调定义重于理解时,数学就会变得很难。虽然现代定义是最精确的,但它没必要是开始的地方。不要抗拒从比较怪的角度来理解数学。找到方程式背后的直观语言。享受数学吧。

—TBC—
| 楼主| 发表于 2023-6-3 20:19:22 四川| 来自小霸王手机 | 显示全部楼层
今天这篇比较短,但是我非常喜欢。这篇翻译完过后就翻译点实战演练内容居多的文章_(:з」∠)_
——
Why Do We Learn Math?
我们为什么要学数学?

I cringe when hearing "Math teaches you to think".
"数学教会你思考"这样的说法让我尴尬。


It's a well-meaning but ineffective appeal that only satisfies existing fans (see: "Reading takes you anywhere!"). What activity, from crossword puzzles to memorizing song lyrics, doesn't help you think?
这种号召听起来很好,但是没什么用,它只会使已经喜欢数学的人满意。(比如:阅读可以带你去你想去的任何地方!)难道纵横字谜和记歌词就不能教会你思考了吗?

Math seems different, and here's why: it's a specific, powerful vocabulary for ideas.
数学看起来不一样,原因在于:它使用了特定的,有力的词汇来描述想法。

Imagine a cook who only knows the terms "yummy" and "yucky". He makes a bad meal. What's wrong? Hrm. There's no way to describe it! Too mild? Salty? Sweet? Sour? Cold? These specific critiques become hazy variations of the "yucky" bucket. He probably wouldn't think "Needs more umami".
设想一个厨师只知道"好吃"和"难吃"两个词。他做了顿难吃的饭。哪里有问题呢?额,没法描述。味道淡了?咸了?甜了?酸了?凉了?这些具体的问题变成了模糊的"难吃"。也许厨师根本不会想到"再加点味精。"

Words are handholds that latch onto thoughts. You (yes, you!) think with extreme mathematical sophistication. Your common-sense understanding of quantity includes concepts refined over millennia: base-10 notation, zero, decimals, negatives.
词语是用来抓住思想的把手。你(对,就是你!)用高度复杂的数学思想想象。过去几千年以来,人们对数量的定义被一次又一次重新改写:10进制,0,小数,负数。

What we call "Math" are just the ideas we haven't yet internalized.
被我们称之为"数学"的东西其实是还没有被我们内化的事物。

Let's explore our idea of quantity. It's a funny notion, and some languages only have words for one, two and many. They never thought to subdivide "many", and you never thought to refer to your East and West hands.
让我们探索一下数量的概念。这个概念比较奇特,有些语言只有表示1、2和许多的词汇。他们从来没有想过细分"许多"这个概念。你也没有想过称你的右手和左手为"东手""西手"(这句实在不会)
| 楼主| 发表于 2023-6-3 20:26:15 四川| 2023-6-3 20:41编辑 | 显示全部楼层
Here's how we've refined quantity over the years:
数量的概念是这样被改写的:
引用
We have "number words" for each type of quantity ("one, two, three... five hundred seventy nine")
各种各样的数(1,2,3…579)
引用
The "number words" can be written with symbols, not regular letters, like lines in the sand. The unary (tally) system has a line for each object.
数词可以用符号来表示,就像沙滩上划出的线。"正"字每一笔画都代表着一份。
引用
Shortcuts exist for large counts (Roman numerals: V = five, X = ten, C = hundred)
大的数字有缩写(罗马数字5,10,100)
引用
We even have a shortcut to represent emptiness: 0

甚至"什么都没有"也有缩写。
引用
The position of a symbol is a shortcut for other numbers. 123 means 100 + 20 + 3.

符号的位置也可以表示缩写。123=100+20+3
Numbers can have incredibly small, fractional differences: 1.1, 1.01, 1.001...

数字可以非常小,只有极细微的区别:1.1,1.01,1.001…
引用
Numbers can be negative, less than nothing (Wha?). This represents "opposite" or "reverse", e.g., negative height is underground, negative savings is debt.

数字甚至可以是负的,比"什么都没有"还小。(啥?)它表示"相反的"或者"颠倒的"。比如,负的高度是在地下,而负的存款是负债。
引用
Numbers can be 2-dimensional (or more). This isn't yet commonplace, so it's called "Math" (scary M).

数字可以是二维或以上的。但它还不够常见,所以尚且被称作"数学"(真可怕)
引用
Numbers can be undetectably small, yet still not zero. This is also called "Math".

数字可以无穷小,但并不是零。这也是"数学"。
| 楼主| 发表于 2023-6-3 20:31:06 四川| 显示全部楼层
Our concept of numbers shapes our world. Why do ancient years go from BC to AD? We needed separate labels for "before" and "after", which weren't on a single scale.我们对数字的理解塑造了我们的世界。为什么古代是从bc到ad?我们需要给公元前和公元后分别贴上标签,因为它们并不是同一个时间尺度上的。

Why did the stock market set prices in increments of 1/8 until 2000 AD? We were based on centuries-old systems. Ask a modern trader if they'd rather go back.
为什么股市在公元2000年以前都是以增量的八分之一设置价格?因为它基于一个古老的系统。去问问现在的交易员愿不愿意回到过去吧。

Why is the decimal system useful for categorization? You can always find room for a decimal between two other ones, and progressively classify an item (1, 1.3, 1.38, 1.386).
为什么小数对分类有用呢?因为你总可以在两个数字间找到更小的数字,并据此分类(1,1.3,1.38,1.386)

Why do we accept the idea of a vacuum, empty space? Because you understand the notion of zero. (Maybe true vacuums don't exist, but you get the theory.)
我们为什么能理解"什么都没有"的概念?因为你理解了零。也许真空并不存在,但不妨碍你理解它。

Why is anti-matter or anti-gravity palatable? Because you accept that positives could have negatives that act in opposite ways.
为什么反物质和反重力可以被我们理解?因为你理解了负数就是正数相对的那一面。

How could the universe come from nothing? Well, how can 0 be split into 1 and -1?
为什么宇宙可以从什么都没有发展到今天这样?呃,我们能把0分成1和-1吗?

Our math vocabulary shapes what we're capable of thinking about. Multiplication and division, which eluded geniuses a few thousand years ago, are now homework for grade schoolers. All because we have better ways to think about numbers.
我们的数学用词决定了我们能理解什么。乘和除曾困扰了几千年前的天才们,现在却只是小学生的家庭作业。这全都是因为我们有了能更好理解数字的方法。

We have decent knowledge of one noun: quantity. Imagine improving our vocabulary for structure, shape, change, and chance. (Oh, I mean, the important-sounding Algebra, Geometry, Calculus and Statistics.)
我们很清楚一个词:数量。再设想我们理解了结构,形状,改变和机会的词(用听上去很正式的话来说就是代数,几何,微积分和统计学。)

Caveman Chef Og doesn't think he needs more than yummy/yucky. But you know it'd blow his mind, and his cooking, to understand sweet/sour/salty/spicy/tangy.
原始人厨师当然不会觉得他需要比好吃和难吃更具体的词。但是如果他理解了甜、酸、咸、辣、味道重的意思,他的思想和厨艺都会爆炸式进步。

We're still cavemen when thinking about new ideas, and that's why we study math.
在思考新的概念时,我们仍是原始人。这就是我们学数学的原因。

—TBC—
返回版块
12
尚未登录
您需要登录后才可以回帖 登录 | 加入学院