查看: 1917|回复: 2

[知识科普] 天文观测

简洁模式
发表于 2010-7-26 18:31:04 | 显示全部楼层
天文观测:观测天体的重要手段是天文望远镜。可以毫不夸张地说,没有望远镜的诞生和发展,就没有现代天文学。随着望远镜在各方面性能的不断改进和提高,天文学也正经历着巨大的飞跃,迅速推进着人类对宇宙的认识。
 1 历史起源
 天文学是一门古老而常新的自然科学,研究对象是宇宙的规律。它是以观察及解释天体的物质状况及事件为主的学科。主要研究天体的分布、运动、位置、状态、结构、组成、性质及起源和演化。天文学与其他自然科学不同之处在于,天文学的主要实验方法是观测,通过观测来收集天体的各种信息。因而对观测方法和观测手段的研究,是天文学家努力研究的一个方向。不断改进和拓宽天文观测的方法是天文学家和天文爱好者永无止境的追求和使命,也是推动天文学发展的动力和源泉。 1608年,荷兰眼镜商李波尔赛偶然发现用两块镜片可以看清远处的景物,受此启发,制造了人类历史第一架望远镜。1609年,天文学家伽利略制作了一架口径4.2厘米,长约1.2米的折射式望远镜。这架望远镜将天文学带入了望远镜时代。

随后在1611年,德国天文学家开普勒又将天文望远镜作了改进,提高了放大倍数。直到今天人们使用的折射式望远镜还是这两种。天文望远镜采用的是开普勒式。折射望远镜的优点是焦距长,底片比例尺大,对镜筒弯曲不敏感,比较适合于做天体测量方面的工作。但是它也有一定的缺陷,巨大的光学玻璃浇制也十分困难,到1897年折射望远镜的发展达到顶点,技术上的限制使得此后的一百多年中再也没有更大的折射望远镜出现。

1668年诞生了第一架反射式望远镜。经过多次磨制非球面的透镜失败后,牛顿另辟思路发明了反射望远镜。用反射镜代替折射镜是一个巨大的成功。它有许多优点,而且相对于折射望远镜比较容易制作,虽然它也存在固有的不足。

折反射式望远镜最早出现于1814年。到了1931年,德国光学家施密特将一块近于平行板的非球面薄透镜与球面反射镜相配合,制成了一架折反射望远镜。这种望远镜光力强、视场大、象差小,适合于拍摄大面积的天区照片,尤其是对暗弱星云的拍照效果非常突出。这类望远镜已经成了天文观测的重要工具。它兼顾折射和反射两种望远镜的优点,非常适合业余的天文观测和摄影。

三百多年来,光学望远镜一直是天文观测最重要的工具。1932年,央斯基(Jansky. K. G)用无线电天线探测到来自银河系中心(人马座方向)的射电辐射,标志着人类打开了在传统光学波段之外进行观测的第一个窗口。二次大战后,射电天文学脱颖而出。射电望远镜为射电天文学的发展起了关键的作用。六十年代天文学的四大发现:类星体、脉冲星、星际分子和宇宙微波背景辐射,都是用射电望远镜观测得到的。
2 场地选择
要进行天文观测,没有一个好的场地是绝对不行的。观测场地周围的环境直接影响着观测效果:如果障碍物过多,很难见到观测目标,就更甭提观测了;如果气流变化过大,会造成图象的抖动和变形,使望远镜的分辨率降低;如果天空被灯光照得很亮,极限星等(肉眼可见最暗恒星的星等)就会降低,换句话说,也就是看到的恒星数就会减少,对观测和摄影都会造成很大的影响,甚至根本无法进行……为了使观测活动达到预期效果,选择一个合适的场地是必须的,选择时要注意以下几点:

一.选择一个开阔的场地,如运动场,使能看到的天区增到最大。如果住在高楼林立的居民区内,在楼下随便找个地方是绝对不能观测的。可想而知,在几栋楼之间要想看到天顶以外的部分是件非常困难的事情。在运动场之类的地方就可以避免这些麻烦事了。

二.其次,要注意气流的影响。若在建筑物附近观测,应特别注意要避开开着的窗户,因为在开着的窗口附近,很容易产生复杂的气流,以至于影响观测效果。此外,还应该注意尽量避免直接在水泥地面上观测,因为水泥的比热容(降低同样温度放出热量的多少)很小,所以在夜间温度会很快下降,也会造成气流变化。土地就比水泥地面好得多,如果有条件的话,最好选择在草地上观测,因为草地含有大量水分,水的比热容又大,所以不易引起气流的剧烈变化。当前,许多天文台都建设在海边或海岛上,主要也是因为这个原因。

三.再次,灯光也是一个不可忽视的问题。随着经济的发展,城市的灯光越来越多,天空被照得越来越亮,而且许多灯都是彻夜不关的,正如上面所说,这对天文观测造成了极为严重的影响。虽然你不能为了进行观测而不让城市发展,但是我们可以主动的去避开灯光。在美国,天文爱好者们为了躲避灯光的影响,自己驾车几十,甚至几百公里来到野外进行观测的事情已是屡见不鲜了——我们也只能学他们,找一块自己认为足够黑暗的地方——当然,应该是自己熟悉的地方,千万不要到自己毫不知情的荒郊野外,以免发生危险。
3 观测地点
如果没有山,在城市里没有什么地方适合做深空天体的天文观测,因为大气污染和光污染太严重了。在城市里估计只能观测太阳、月亮和木星土星。观测火星都比较勉强。
4 探测手段
除了射电观测,非可见光天文观测还包括红外观测、紫外观测、X射线观测和γ射线观测等。由于这几种天文观测受地球大气的影响更大,人们往往将望远镜安装在飞机上,或用热气球载上高空。此后又用火箭、航天飞机和卫星等空间技术将望远镜送到地球大气层外。

空间观测设备与地面观测设备相比,有极大的优势。光学空间望远镜可以比在地面接收到宽得多的波段。由于没有大气抖动,分辨率也得到了极大的提高。空间没有重力,仪器也不会因自重而变形。

以天文学家哈勃的名字命名的哈勃空间望远镜(HST)是由美国宇航局主持建造的四座巨型空间天文台中的第一座,也是所有天文观测项目中规模最大、投资最多、最受公众注目的一项。它筹建于1978年,设计历时7年,1989年完成,并于1990年4月25日由航天飞机运载升空,耗资30亿美元。但是由于人为原因造成的主镜光学系统的球差,不得不在1993年12月2日进行了规模浩大的修复工作。成功的修复使哈勃望远镜的性能达到甚至超过了原先设计的目标。观测结果表明它的分辨率比地面的大型望远镜高出几十倍。它对国际天文学界的发展有非常重要的影响。
5 发展历程
空间天文观测航天器把观测仪器送到离地面几百公里高度以上的宇宙空间进行天文观测的航天工具。空间天文观测﹐又称为大气外观测。虽然人们在卫星上天以前﹐已开始利用飞机﹑气球﹑火箭进行探测。但是它们有很大的局限性。飞机飞行的高度约10~25公里﹐使红外观测得到改善﹐但要接收高能的短波辐射仍无能为力。气球的飞行高度虽比飞机高﹐但气球上面的大气对天文观测仍有影响。火箭又有观测时间短暂的弱点。利用航天器进行天文观测﹐兼有高度高和观测时间长的优点。航天器的高度一般都在几百公里以上﹐从而可以避开地球大气和地磁场的影响。航天器的工作寿命一般为几个月至几年。利用航天器进行空间天文观测﹐不但可以观测太阳系天体所有波长的电磁辐射﹐而且还可观测到不同能量的粒子辐射。对于恒星﹐其观测波长仅受星际气体吸收的限制﹔而对于月球﹑行星和行星际空间﹐则可作直接采样或逼近观测。

一个完整的空间天文探测系统包括航天器﹑运载火箭和地面支援设备三大部分。航天器是装载科学仪器﹑执行探测任务的主要部分。进行空间天文观测的航天器必须具有控制自身姿态变化的能力﹐具有精确的定向精度﹐以完成证认天体﹑确定辐射空间分布和辐射源位置的任务。为了进行复杂的科学考察﹐航天器还必须具备大规模数据贮存和快速传输的能力。近年来世界各国相继发射了大量航天器。为了执行各种特定的使命﹐还发射了一系列考察卫星﹑行星和行星际的航天器﹐构成不同的观测系列。
6 选购指南
天文观测用望远镜选购指南:很多天文爱好者都希望拥有一架理想的天文望远镜,目前市场上几百至一二千元的国产简易单筒天文望远镜的生产厂家和品种很多,其结构基本都是相同的:采用一片消色差物镜片和几组目镜片,镜身为塑料或薄金属,配有一只简易三角架,口径在50-60mm不等,倍数从几十倍时成像还算可以,但倍数再高时成像迅速变差;影像反差降低、模糊不清、抖动严重,尤其是在几百倍时基本无法观测,同时由于受工艺水平限制和节省成本,这些简易天文望远镜大都采用一片反光镜进行简单的半转像,所观测到景物是左右相反的,操作十分不方便。望远镜属于精密器材,从设计、选材、浇注、毛坯、磨制、胶合、镀膜、装配、检校等均有着较高的要求,一般的小厂很难全面做到,质量也更难以保证。因此在选购上最好还是选正规大型光学厂、军工厂的产品。

对于天文观测来说,由于天体光线暗弱,口径(物镜片直径)大小是最重要的。口径越大、通光量就越大,成本、体积就越大。世界上对于天文望远镜的命名,也都是以口径称呼的,如:120厘米级、2.16米级(我国最大)、6米级(前苏联和世界最大)。所以如果经济条件许可,天文观测用望远镜首先应尽量选择大口径的。

倍数=物镜焦距/目镜焦距,所以在磨制镜片时只要增加物镜焦距或者减少目镜焦距既可得到更高的倍率,如果愿意,倍数可以轻易地做到几百几千倍以上,但实际上一架望远镜合理的使用倍数是受物镜口径、观测环境限制的:口径大的倍数可以高些,但这也是有限度的,即使用天文台使用的大型天文望远镜:其最高倍数一般也只是几百倍,这是因为观测环境对望远镜的影响更大,随着陪数的增高,大气中的灰尘、气流也会被同时放大。同时倍数越高,观测视场就越小、越暗、导致分辨力下降,反而使观测效果降低,这也是为什么要耗巨资在太空中安置哈勃望远镜的原因。另外高倍率对望远镜的稳定性要求也极高,在几十倍时,很小的碰动也会使望远镜的景物发生抖动,几百倍时既使很轻的微风也会导致景物抖动不停,难以政党观测。高倍所导致视场变小的另一大不足是寻找目标极为困难,用过天文望远镜的朋友都有这种体会:想要用高倍望远镜寻找一个目标是很麻烦的,好容易找到所要观测的目标后,又会因地球的自转而使目标很快离开视场,又得重新寻找。因此说盲目追求高倍是不实际的。根据光学规律和长期的经验表明,一架望远镜的最大实用倍率为D值左右(D=物镜口径,毫米),如一架望远镜口径为50mm,其最大实用倍率不应超过50倍。

在天文观测中,除了月球、太阳、几大行星、星团、星云、星系等天体由于距地球相对近些或大些,可以观测到视面,对于其它所有的恒星来讲,由于距地球实在太遥远,即使是太空中的哈勃望远镜进化论多少倍看到的也只是一个亮点。但口径越大看到的恒星亮点也就越多,所以对于天文望远镜来讲同双筒望远镜一样,口径比倍率更重要,由于天文观测都是固定在三角架上,因此体积大些无关紧要。

俄罗斯比较常见的适合天文观测的单筒望远镜有20x50海盗式、20-30x50小台式、30-60x70大台式、55x105反射式、111x116反射式等,这些单筒望远镜都俄罗斯军工厂出口,无论是外观工艺,还是光学素质都非常好,倍数设计也非常合理,都在D值之内,而且全部采用全转像装置,从镜中看到的景物与实际景物方向一致,不仅适合天文观测,也适合地面观测。一般天文爱好者选20x50海盗式就可以了,这是一台传统的经典型望远镜,内部采用了多达9组11片的精密结构,成像尖锐。条件好的也可以选30-60x70大台式,其特有的转塔式变倍方式源于大型军用双筒望远镜,十分方便,并且配有一只可折叠的金属三角架。如果喜欢天文摄影,也可选55x105、111x116两种反射式,不过天文摄影难度很大。

中国的天文爱好者一般都购买单筒天文望远镜,进行天文观测,其实国外大多数天文爱好者者普遍使用大口径的双筒天文望远镜,这是很有道理的:双筒望远镜最大的的优势在于双眼同时观测,不但视场宽广、更为舒适、不易疲劳、立体感强,尤其是充分地利用了人眼有效瞳径,使观测灵敏度大大提高,其实际观测效果远远高于同口径的单筒望远镜,如一架口径50mm的双筒望远镜其实际通光亮大约相当于一架口径70mm的单筒望远镜,可以看出使用双筒望远镜进行天文观测更为经济、实用。国外很多业余天文爱好者就是用大口径双筒望远镜做出了很多天文发现,例如:著名的百武慧星就是日本天文爱好者百武裕司用一架富士25x150大口径双筒望远镜首先发现的,当然国外天文爱好者大多都有经济实力,如他们用量最大的富士25x150大口径双筒望远镜合人民币约六七万元。另外,我国98厂生产的专供部队哨所远距离观测用的25-40x100大型双筒望远镜对于天文观测极为出色,价格相对也不算贵,对有经济能力的读者可以考虑选购。
本主题帖为【历史主题】,仅楼主发布内容可以浏览。
| 楼主| 发表于 2010-7-28 10:33:36 | 显示全部楼层
回复  2楼  ShirleyHolmes


       呵呵!!
尚未登录
您需要登录后才可以回帖 登录 | 加入学院